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3 — Laplace Transform

3.1 Definition of Laplace Transform
Definition 3.1.1 The Laplace transform of a function f (t), denoted by F(s) = L ( f (t)) is a
function defined by

F(s) = L ( f (t)) =
� ∞

0
e−st f (t)dt (3.1)

for all s such that this integral converges.

Definition 3.1.2 The orginal function f (t) in (3.1) is called the inverse transform or invers of
F(s) and will be denoted by L −1(F(s))

i.e., f (t) = L −1(F(s))

� Example 3.1 Let f (t) = 1 when t ≥ 0. Find F(s) �

Solution: From (3.1) we obtain

L ( f (t)) = L (1) =
� ∞

0
e−stdt = lim

n→∞

� n

0
e−stdt = lim

n→∞

�−1
s

e−st
�����

n

0

= lim
n→∞

�−1
s
(e−sn −1)

�

=
1
s
, (s > 0)

� Example 3.2 Let f (t) = eat when t ≥ 0, where a is constant. Find L ( f ) �

Solution: By definition

F(s) = L ( f (t)) = L (eat) =
� ∞

0
e−steatdt = lim

n→∞

� n

0
e−(s−a)tdt = lim

n→∞

� −1
s−a

e−(s−a)t
�����

n

0

=
1

s−a
, (s > a)
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Theorem 3.1.1 — Linearity of the Laplace Transform The Laplace transform is linear
operation; that is, for any function f (t) and g(t) whose Laplace transforms exist and any
constants a & b,

L {a f (t)+bg(t)}= aL ( f (t))+bL (g(t))

� Example 3.3 Let f (t) = sinωt. Find L ( f (t)) �

Solution: Since L (eat) =
1

s−a
, set a = iω with i =

√
−1

⇒ L (eiωt) =
1

s− iω
=

s+ iω
(s− iω)(s+ iω)

=
s+ iω

s2 +ω2 =
s

s2 +ω2 + i
ω

s2 +ω2

Since eiωt = cosωt + isinωt (Euler’s Formule) and by theorem 3.1.1, we obtain

L (eiωt) = L (cosωt + isinωt)

= L (cosωt)+ iL (sinωt)

Equating the real and imaginary parts of these two equations, we get

L (cosωt) =
s

s2 +ω2 and L (sinωt) =
ω

s2 +ω2

f (t) L ( f (t)) = F(s) Domain
1 c (constant) c

s s > 0

2 t 1
s2 s > 0

3 tn n!
sn+1 s > 0

4 ekt 1
s−k s > k

5 sinkt k
s2+k2 s > 0

6 coskt s
s2+k2 s > 0

7 coshkt s
s2−k2 s > k

8 sinhkt k
s2−k2 s > k

Theorem 3.1.2 — (First Shifting Theorem) If f (t) has the transform F(s) (where s > k), then
eat f (t) has the transform F(s−a) (where s−a > k)

i.e., L (eat f (t)) = F(s−a) or

eat f (t) = L −1(F(s−a))

� Example 3.4 Compute L (e2t cos3t) �
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3.2 Existence of Laplace Transform 45

Solution: Since F(s) = L (cos3t) =
s

s2 +9
and a = 2, we have L (e2t cos3t) =

s−2
(s−2)2 +9

� Example 3.5 Find L −1
�

1
s−4

− 6
(s−4)2

�
�

Solution: Since L −1
�
e4t

�
=

1
s−4

and L (t) =
1
s2 ⇒ L (te4t) =

1
(s−4)2

∴ L −1
�

1
s−4

− 6
(s−4)2

�
= L −1

�
1

s−4

�
−6L −1

�
1

(s−4)2

�
= e4t −6te4t

Exercise 3.1 Compute
1. L (eattn)

2. L −1
�

1
s2 +4s+13

�

3. L −1
�

2s+4
s2 +4s+5

�

�

3.2 Existence of Laplace Transform
Definition 3.2.1 A function f has a jump discontinuous at a point t0 if the function has
different (finite) limits at t approaches t0 from the left and from the right or if the two limits
are equal but different from f (t0). Note that f (t0) may or may not be equal to either

lim
t→t+0

f (t) or lim
t→t−0

f (t)

Definition 3.2.2 A function f defined on (0, ∞) is picewise continuous if it is continuous
on every finite interval 0 ≤ t ≤ ∞, except possibly at finitely many points where it has jump
discontinuties

� Example 3.6 Let





t2 for 0 ≤ t < 2
3 for t = 2
1 for 2 < t ≤ 2
−1 for 3 < t ≤ 4

�
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46 Laplace Transform

Theorem 3.2.1 — Existence Theorem Let f (t) be a function which is picewise continuous
on every finite interval in the range t ≥ 0 and satisfies

| f (t)|≤ Mekt , ∀t ≥ 0 (3.2)

and for some constant k and M. Then the Laplace transform of f (t) exists for all s > k

Proof. Since f is piecewise continuous, e−st f (t) has a finite integral over any finite interval on
t ≥ 0, and

|L ( f (t))|=
����
� ∞

0
e−st f (t)dt

���� ≤
� ∞

0
e−st | f (t)|dt

≤
� ∞

0
Me−stektdt = M

� ∞

0
e−(s−k)tdt

=
M

s− k
, s > k

L ( f (t)) exists. (comparison theorem) �

3.3 Laplace Transform of Derivatives

Theorem 3.3.1 Suppose that f (t) is contiuous for all t ≥ 0, satisfies the condition

| f (t)|≤ Mekt

for some k and M, and has a derivative f �(t) that is piecewise continuous on every finite
interval in the range t ≥ 0. Then the Laplace transform of the derivative f �(t) exists when
s > k and

L ( f �(t)) = sL ( f (t))− f (0) (3.3)

Proof. Suppose f �(t) is continuous for all t ≥ 0. Integrating by parts

L ( f �(t)) =
� ∞

0
e−st f �(t)dt = e−st f (t)

��∞
0 +

� ∞

0
se−st f (t)dt

= 0− f (0)+ s
� ∞

0
e−st f (t)dt =− f (0)+ sL ( f (t))

∴ L ( f �(t)) = sL ( f (t))− f (0)

�

Theorem 3.3.2 — Laplace transform of the derivative of any order n Let f (t) and its
derivatives f �(t), f ��(t), . . . , f (n−1)(t) be continuous functions for all t ≥ 0, satisfies the
condition

| f (t)|≤ Mekt

for some k and M, and let the derivative f (n)(t) be piecewise continuous on every finite interval
in the range t ≥ 0. Then the Laplace transform of the derivative f (n)(t) exists when s > k and
is given by

L ( f (n)(t)) = snL ( f (t))− sn−1 f (0)− sn−2 f �(0)− . . . ,− f (n−1)(0) (3.4)

For n = 2, L ( f ��(t)) = s2L ( f (t))− s f (0)− f �(0)
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3.3 Laplace Transform of Derivatives 47

� Example 3.7 Let f (t) = cos2 t. Find L ( f (t)) �

Solution: We have f (0) = 1, f �(t) =−2cos t sin t =−sin2t

L ( f �(t)) = L (−sin2t) = sL ( f (t))− f (0)

⇒ −2
s2 +4

= sL (cos2 t)−1 ⇒ sL (cos2 t) = 1− 2
s2 +4

∴ L (cos2 t) =
s2 +2

s(s2 +4)

� Example 3.8 Let f (t) = t sinωt. Find L ( f (t)) �

Solution: We have f (0) = 0, f �(t) = sinωt + tω cosωt ⇒ f �(0) = 0
f ��(t) = 2ω cosωt − tω2 sinωt

L ( f ��(t)) = s2L ( f (t))− s f (0)− f �(0)

⇒ L (2ω cosωt − tω2 sinωt) = s2L (t sinωt)− s.0−0

⇒ 2ωL (cosωt)−ω2L (t sinωt) = s2L (t sinωt)

⇒ 2ωs
s2 +ω2 = (s2 +ω2)L (t sinωt)

⇒ L (t sinωt) =
2ωs

(s2 +ω2)2

� Example 3.9 Solve the IVP
a) y�� −4y = 0, y(0) = 1, y�(0) = 2 b) y�� −3y�+2y = 4t −6, y(0) = 1, y�(0) = 3

�

Solution: a) Taking Laplace transform both sides and using differentiation property, we have

L (y�� −4y) = L (y��)−4L (y) = 0 ⇒ s2L (y)− sy(0)− y�(0)−4L (y) = 0

⇒ (s2 −4)L (y)− s−2 = 0

⇒ L (y) =
s+2
s2 −4

=
1

s−2

⇒ y = L −1
�

1
s−2

�
= e2t

∴ y(t) = e2t

b) y�� −3y�+2y = 4t −6, y(0) = 1, y�(0) = 3 Taking Laplace transform both sides

L (y�� −3y�+2y) = L (4t −6)

⇒ L (y��)−3L (y�)+2L (y) = 4L (t)−L (6)

⇒ s2L (y)− sy(0)− y�(0)−3sL (y)+3y(0)+2L (y) =
4
s2 −

6
s
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48 Laplace Transform

⇒ (s2 −3s+2)L (y)− s =
4−6s

s2

⇒ (s−2)(s−1)L (y) =
4−6s

s2 + s =
4−6s+ s3

s2

⇒ L (y) =
(s−2)(s2 +2s−2)

s2(s−2)(s−1)
=

s2 +2s−2
s2(s−1)

⇒ L (y) =
s2

s2(s−1)
+

2(s−1)
s2(s−1)

=
1

s−1
+

2
s2

⇒ y(t) = L −1
�

1
s−1

�
+2L −1

�
1
s2

�

∴ y(t) = et +2t

Exercise 3.2 Solve the IVP
1. y��+4y = 0, y(0) = 1, y�(0) = 2
2. y�� −5y�+6y = e−t , y(0) = 0, y�(0) = 2
3. y�+4y = cos t, y(0) = 0
4. y��+4y�+3y = et , y(0) = 1, y�(0) = 2

�

3.4 Solving Differential Equation with polynomial coefficient

Theorem 3.4.1 Let L ( f (t)) = F(s) for s > a, and suppose that F is differentiable. Then

L (t f (t)) =− d
ds

L ( f (t)) (3.5)

Proof. F(s) =
� ∞

0 e−st f (t)dt

d
ds

F(s) =
d
ds

� ∞

0
e−st f (t)dt =

� ∞

0

d
ds

e−st f (t)dt =
� ∞

0
−te−st f (t)dt =−L (t f (t))

�

Ingeneral,

L (tn f (t)) = (−1)n dn

dsn F(s) (3.6)

� Example 3.10 Find L (e−tt sin2t) �

Solution:

L (e−tt sin2t) = − d
ds

L (e−t sin2t)

= − d
ds

�
2

(s+1)2 +4

�

=
4(s+1)

((s+1)2 +4)2
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3.4 Solving Differential Equation with polynomial coefficient 49

� Example 3.11 Solve the equation with variable coefficients

ty�� − ty� − y = 0, y(0) = 0, y�(0) = 3

�

Solution: Let Y (s) = L (y(t))

L (ty��(t)) = − d
ds

L (y��) =− d
ds

�
s2L (y)− sy(0)− y�(0)

�

= − d
ds

L
�
s2Y (s)− s.0−3

�

= −(2sY (s)+ s2Y �(s))

L (ty�(t)) = − d
ds

L (y�) =− d
ds

(sL (y)− y(0))

= − d
ds

(sY (s)) =−(Y (s)+ sY �(s))

Thus, ty�� − ty� − y = 0, y(0) = 0. Taking both sides Laplace transform.

⇒ L (ty�� − ty� − y) = 0 ⇒ L (ty��)−L (ty)−L (y) = 0

⇒ −(Y (s)+ sY �(s))+Y (s)+ sY �(s)−Y (s) = 0

⇒ (s− s2)Y �(s)−2sY (s) = 0 ⇒ s(s−1)Y � = 2sY

⇒ Y � =
2

1− s
Y ⇒ dY

ds
=

2
1− s

Y

⇒ dY
Y

=
2

1− s
ds

⇒ lnY =−2ln(s−1)+ lnc

⇒ Y =
c

(s−1)2 ⇒ L (y) =
c

(s−1)2

⇒ y(t) = L −1
�

c
(s−1)2

�
= ctet

y(0) = 0 To find c, y�(t) = cet + ctet ⇒ y�(0) = c = 3

∴ y(t) = 3tet

Exercise 3.3 Find
1. L (te−t sin4t)
2. L (t2e3t cos2t)

�

Exercise 3.4 Solve the IVP
1. ty�� − y� = 2t2, y(0) = 0
2. ty��+(4t −2)y� −4y = 0, y(0) = 1
3. 2y��+ ty� −2y = 10, y(0) = y�(0) = 0

�
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50 Laplace Transform

3.5 System of Linear Differential equation

Consider

dx
dt

= a11(t)x(t)+a12(t)y(t)+ f (t) (3.7)

dy
dt

= a21(t)x(t)+a22(t)x(t)+g(t)

with initial conditions x(0) = x0 and y(0) = y0
By taking Laplace transform both equations in system (3.7) we can find the solutions of the
system.

� Example 3.12 Consider the system of initial value equation

x�+ y = e2t

x+ y� = 0

s.t x(0) = 0, y(0) = 0 �

Exercise 3.5 Solve system of differential equation

a. x�+ y = 2cos t

x+ y� = 0

s.t x(0) = 0, y(0) = 1

b. y��1 = y1 +3y2

y��2 = 4y1 −4et

s.t y1(0) = 2, y�1(0) = 3, y2(0) = 1,y2(0) = 2

c y�1 = −y2

y�2 = y1, y1(0) = 1, y2(0) = 0

�

3.6 Unit Step function(Heaviside Function)

A unit step function is defined by

U(t −a) =Ua(t) =





0 if t < a
a ≥ 0

1 if t ≥ a

A general piecewise-defined function of the type

f (t) =

�
g(t) if 0 ≤ t < a
h(t) if t ≥ a

is the same as

f (t) = g(t)+g(t)U(t −a)+h(t)U(t −a).
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3.6 Unit Step function(Heaviside Function) 51

Similarly, a function of the type

f (t) =





0 if 0 ≤ t < a
g(t), if a ≤ t < b
0 if t ≥ b

can be written

f (t) = g(t)(U(t −a)−U(t −b)) .

The transform of U(t −a) is

L (U(t −a)) =
� ∞

0
e−stU(t −a)dt

=
� ∞

a
e−st .1dt = −e−st

s

����
∞

a

L (U(t −a)) =
e−as

s
, s > 0

Theorem 3.6.1 — Second shifting theorem If F(s) is the Laplace transform of f (t), then

L (Ua(t) f (t −a)) = e−asF(s) (3.8)

Proof.

L (Ua(t) f (t −a)) =
� ∞

0
e−stUa(t) f (t −a)dt =

� ∞

a
e−st f (t −a)dt Let ξ = t −a

=
� ∞

a
e−s(ξ+a) f (ξ )dξ = e−sa

� ∞

a
e−s(ξ ) f (ξ )dξ

= e−asF(s)

�

� Example 3.13 Let f (t) =

�
0, t < 2
t −2, t ≥ 2

Find L ( f (t)) �

Solution: U2(t) =

�
0, t < 2
1, t > 2

⇒ f (t) =U2(t)(t −2)

L (U2(t)(t −2)) = e−2sL (t) =
e−2s

s2

� Example 3.14 Find the inverse transform of F(s) =
1+ e−2s

s2 �

Solution:

L −1(F(s)) = L −1
�

1
s2 +

e−2s

s2

�
= t +U2(t)(t −2)

=

�
t 0 ≤ t < 2
2(t −1) t ≥ 2
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� Example 3.15 Solve the IVP

y��+ y = g(t), y(0) = 0, y�(0) = 1

where g(t) =

�
0 0 ≤ t < 1
1 1 ≤ t < 2

�

Solution: We can express g(t) as U1(t)−U2(t).
The Laplace transform of the IVP is

L (y��)+L (y) = L (g(t))

⇒ s2L (y)− sy(0)− y�(0)+L (y) = L (U1(t))−L (U2(t))

⇒ (s2 +1)L (y(t))−1 =
e−s

s
− e−2s

s

⇒ L (y) =
1

s2 +1
+

e−s

s(s2 +1)
− e−2s

s(s2 +1)

⇒ y(t) = L −1
�

1
s2 +1

�
+L −1

�
e−s

s(s2 +1)

�
−L −1

�
e−2s

s(s2 +1)

�

⇒ y(t) = sin t +U1(t) [1− cos(t −1)]−U2(t) [1− cos(t −2)]

3.7 Convolution
Definition 3.7.1 The convolution of the function f and g written by f ∗g is defined by

( f ∗g)(t) =
� t

0
f (t − τ)g(τ)dτ, ∀t ≥ 0 (3.9)

Theorem 3.7.1 — The convolution Theorem If F(s) and G(s) are the Laplace transform of
f (t) and g(t) respectively, then

L ( f ∗g)(t) = L ( f )L (g) (3.10)

Properties of convolution

1. f ∗g = g∗ f
2. f ∗ (g∗h) = ( f ∗g)∗h (associative)
3. f ∗ (g+h) = ( f ∗g)+( f ∗h) (Distributive)

� Example 3.16 Let H(s) =
1

(s2 +ω2)2 . Find h(t) �
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Solution: We have L −1
�

1
s2 +ω2

�
=

sinωt
ω

.

h(t) =
sinωt

ω
∗ sinωt

ω
=

1
ω2

� t

0
sinωτ sinω(t − τ)dτ

=
1

ω2

� t

0
sinωτ sinω(t − τ)dτ

=
1

ω2

� t

0
sinωτ[sinωt cosωτ − sinωτ cosωt]dτ

=
sinωt

ω2

� t

0
sinωτ cosωτ − cosωt

ω2

� t

0
sin2 ωτdτ

=
sinωt

ω2

� t

0
sinωτ cosωτ − cosωt

ω2

� t

0

�
1
2
+

cos2ωτ
2

�
dτ

=
sinωt

ω2

�
sin2 ωτ

2ω

�τ

0
− cosωt

ω2

�
1
2

t − sin2ωτ
4ω

�τ

0

=
sinωt

ω2

�
sin2 ωt

2ω

�
− t cosωt

2ω2 +
cosωt sin2ωt

4ω3

=
sinωt

ω2

�
sin2 ωt

2ω

�
− t cosωt

2ω2 +
cos2 ωt sinωt

2ω3

=
sinωt
2ω3

�
sin2 ωt + cos2 ωt

�
− t cosωt

2ω2

=
1

2ω2

�
sinωt

ω
− t cosωt

�

� Example 3.17 Solve the initial value problem

y��+4y�+13y = 2e−2t sin3t, y(0) = 1, y�(0) = 0

�

Solution:

Integral equation
An equation of the form

y(t) = f (t)+λ
� t

0
K(t,τ)y(τ)dτ (3.11)

is called a Volterra integral equation, where λ is a parameter and K(t,τ) is called the kernel
of the integral equation. The Laplace transform is well suited to the solution of such integral
equations when the kernel K(t,τ) has a special form that depends on t and τ only through the
difference t−τ , because then K(t,τ) =K(t−τ) and the integral in (3.11) becomes a convolution
integral.
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� Example 3.18 Solve the Volterra integral equation

y(t) = 2e−t +
� t

0
sin(t − τ)y(τ)dτ

�

Solution: Taking laplace tarnsform both sides, we get

L (y(t)) = L

�
2e−t +

� t

0
sin(t − τ)y(τ)dτ

�

=
2

1+ s
+L

�� t

0
sin(t − τ)y(τ)dτ

�

=
2

1+ s
+

L (y(t))
s2 +1�

1− 1
s2 +1

�
L (y(t)) =

2
1+ s

⇒
�

s2

s2 +1

�
L (y(t)) =

2
1+ s

L (y(t)) =
2(s2 +1)
s2(s+1)

=
2
s2 −

2
s
+

4
1+ s

y(t) = L −1(
2
s2 )−L −1(

2
s
)+L −1(

4
1+ s

)

y(t) = 2t −2+4e−t , for t > 0

� Example 3.19 Solve the equation

y��+ y =
� t

0
sin(τ)y(t − τ)dτ y(0) = 1, y�(0) = 0

�

Exercise 3.6 Solve
1. y��+ y =

√
2sin

√
2t, y(0) = 10,y�(0) = 0

2. y�+ y = e−3t cos2t, y(0) = 0

3. y�+2y = f (t), y(0) = 0, f (t) =

�
t, 0 ≤ t < 1
0, t ≥ 1

4. y�+ y =
� t

0 e−2τy(t − τ)dτ, y(0) = 3
5. y�� − y =

� t
0 sinh(τ)y(t − τ)dτ y(0) = 1, y�(0) = 0

6. y�� −4y = 2
� t

0 sinh(2τ)y(t − τ)dτ y(0) = 1, y�(0) = 0
�

3.8 Laplace Transform of the Integral of a function

Theorem 3.8.1 — Integration of f (t) Let F(s) be the Laplace transform of f (t). If f (t) is
piecewise continuous and satisfies an inequality of the form | f (t)|≤ Mekt , then

L

�� t

0
f (τ)dτ

�
=

1
s

F(s), (s > 0, s > k) (3.12)
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Or if we take the inverse transform on both sides
� t

0
f (τ)dτ = L −1

�
1
s

F(s)
�

(3.13)

� Example 3.20 Let L ( f (t)) =
1

s2(s2 +ω2)
. Find f (t) �

Solution: We have L −1
�

1
s2 +ω2

�
=

1
ω

sinωt . From (3.13) it follows that

L −1
�

1
s(s2 +ω2)

�
=

1
ω

� t

0
sinωτdτ

=
1
ω

�
− cosωτ

ω

���
t

0

�
=

1
ω

�−cosωt +1
ω

�

=
1

ω2 (1− cosωt)

L −1
�

1
s

�
1

s(s2 +ω2)

��
=

1
ω2

� t

0
(1− cosωτ)dτ

=
1

ω2

�
τ − sinωτ

ω

����
t

0

�

=
1

ω2

�
t − sinωt

ω

�

Electric Circuit
Consider the RLC Circuit below

Figure 3.1: LRC series circuit.

In a single-loop or series circuit, Kirchhoff’s second law states that the sum of the voltage drops
across an inductor, resistor, and capacitor is equal to the impressed voltage E(t). Now it is known
that the voltage drops across an inductor, resistor, and capacitor are, respectively,

L
di(t)

dt
,Ri(τ), and

1
c

� t

0
i(τ)dτ

where I(t) is the current and L, R, and C are constants. It follows that the current in a circuit,
such as that shown in Figure 3.1, is governed by the integrodifferential equation

L
di(t)

dt
+Ri(τ)+

1
c

� t

0
i(τ)dτ = E(t)
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56 Laplace Transform

� Example 3.21 Determine the current i(t) in a single-loop LRC circuit when L = 0.1 h,R =
2 ω,C = 0.1 f , i(0) = 0, and the impressed voltage is E(t) = 120t −120tU(t −1) �
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